1740 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.089$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexane-1,6-diammonium bis(pyridine-2carboxylate)

Nam-Ho Kim and Kwang Ha*

School of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 20 May 2009; accepted 22 May 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.124; data-to-parameter ratio = 14.0.

The title compound, $C_6H_{18}N_2^{2^+}\cdot 2C_6H_4NO_2^-$, consists of a doubly protonated hexamethylenediammonium dication and two pyridine-2-carboxylate anions. These ions interact by means of intermolecular N-H···O and N-H···N hydrogen bonds to form a two-dimensional array. The carboxylate groups of the anions appear to be delocalized on the basis of the C-O bond lengths.

Related literature

For the crystal structures of $(C_6H_{18}N_2)X_2$ (X = Cl, Br or I), see: Binnie & Robertson (1949*a*,*b*); Borkakoti *et al.* (1978); van Blerk & Kruger (2008). For details of some other hexane-1,6diammonium compounds, see: Phan Thanh *et al.* (2000); Mousdis *et al.* (2000); Rakovský *et al.* (2002); Dammak *et al.* (2007); Sun *et al.* (2007); Yang *et al.* (2007); Wilkinson & Harrison (2007); Wang & Wei (2007). For the structure of pyridine-2-carboxylic acid, see: Hamazaki *et al.* (1998).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_{18}N_2^{2+} \cdot 2C_6H_4NO_2}^- \\ {M_r} = 362.43 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 9.8182 \ (7) \\ {\rm \AA} \\ b = 9.1569 \ (7) \\ {\rm \AA} \\ c = 21.6423 \ (17) \\ {\rm \AA} \\ \beta = 99.038 \ (2)^\circ \end{array}$

Data collection

Bruker SMART 1000 CCD diffractometer $V = 1921.6 (3) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K 0.33 × 0.25 × 0.18 mm

Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.685, T_{max} = 0.984$ 13964 measured reflections 4752 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.124$ S = 0.934752 reflections 339 parameters

All H-atom parameters refined $\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3A····O4	1.07 (3)	1.70 (3)	2.747 (3)	165 (3)
$N3-H3B \cdot \cdot \cdot O1^{i}$	0.96 (3)	2.29 (3)	3.088 (3)	140 (2)
$N3-H3B \cdot \cdot \cdot N1^{i}$	0.96 (3)	2.15 (3)	2.962 (3)	142 (2)
$N3-H3C \cdot \cdot \cdot O1^{ii}$	0.92 (3)	1.91 (3)	2.835 (3)	177 (3)
$N4 - H4A \cdots O3^{iii}$	0.97 (3)	2.27 (3)	3.064 (3)	139 (2)
$N4 - H4A \cdots N2^{iii}$	0.97 (3)	2.12 (3)	2.963 (3)	144 (2)
$N4 - H4B \cdot \cdot \cdot O3^{iv}$	1.07 (3)	1.67 (3)	2.740 (3)	175 (3)
$N4-H4C \cdot \cdot \cdot O2^{v}$	1.05 (3)	1.70 (4)	2.754 (3)	179 (3)
$C1\!-\!H1\!\cdots\!O4^{vi}$	1.02 (3)	2.45 (3)	3.328 (4)	145 (2)
$C16-H16B\cdots O3^{iv}$	1.01 (3)	2.58 (3)	3.426 (4)	140.8 (18)

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z; (iv) x + 1, y, z; (v) x + 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (vi) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (grant No. KRF-2007–412-J02001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2459).

References

- Binnie, W. P. & Robertson, J. M. (1949a). Acta Cryst. 2, 116-120.
- Binnie, W. P. & Robertson, J. M. (1949b). Acta Cryst. 2, 180-188.
- Blerk, C. van & Kruger, G. J. (2008). Acta Cryst. C64, 0537-0542.
- Borkakoti, N., Lindley, P. F., Moss, D. S. & Palmer, R. A. (1978). Acta Cryst. B34, 3431-3433.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dammak, T., Fourati, N., Boughzala, H., Mlayah, A. & Abid, Y. (2007). J. Lumin. 127, 404–408.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54 IUC9800049.
- Mousdis, G. A., Papavassiliou, G. C., Raptopoulou, C. P. & Terzis, A. (2000). J. Mater. Chem. 10, 515–518.
- Phan Thanh, S., Renaudin, J. & Maisonneuve, V. (2000). Solid State Sci. 2, 143–148.
- Rakovský, E., Žúrková, L. & Marek, J. (2002). *Monatsh. Chem.* **133**, 277–283. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, D., Zhang, H., Zhang, J., Zheng, G., Yu, J. & Gao, S. (2007). J. Solid State Chem. 180, 393–399.
- Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, 0995–0996.
- Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m902-m904.
- Yang, S., Li, G., Tian, S., Liao, F., Xiong, M. & Lin, J. (2007). J. Solid State Chem. 180, 2225–2232.

Acta Cryst. (2009). E65, o1415 [doi:10.1107/S1600536809019424]

Hexane-1,6-diammonium bis(pyridine-2-carboxylate)

N.-H. Kim and K. Ha

Comment

The title compound, $C_6H_{18}N_2^{2+}.2C_6H_4NO_2^-$, consists of a doubly protonated hexamethylenediammonium dication and two pyridinecarboxylate anions (Fig. 1). The carboxylate groups of the anions appear to be delocalized on the basis of the C—O bond lengths (C—O: 1.241 (3)–1.247 (3) Å). The N3—C13—C14—C15 and C16—C17—C18—N4 torsion angles [64.9 (4)° and -66.6 (4)°, respectively] display the *gauche* conformation for the two groups within the dication, whereas C13—C14—C15—C16, C14—C15—C16—C17—C18 atoms show the anti conformation [their torsion angles lie in the range of 174.6 (3)°–177.3 (3)°]. In the crystal, the component ions interact by means of many intermolecular N—H···O and N—H···N hydrogen bonds and C—H···O contacts to form a 2-D array (Table 1 and Fig. 2).

Experimental

A solution of 1,6-diaminohexane (0.200 g, 1.721 mmol) and pyridine-2-carboxylic acid (1.180 g, 8.606 mmol) in H_2O (20 ml) was stirred for 2 h at 333 K. The solvent was removed under vacuum and the residue was washed with acetone to give a white powder (0.5972 g). Crystals were obtained by slow evaporation from an ethanol solution.

Refinement

All H atoms were located from Fourier difference maps and refined isotropically; C-H = 0.96 (3)-1.13 (3) Å and N-H = 0.92 (3)-1.07 (3) Å.

Figures

Fig. 1. The molecular structures of the components (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Fig. 2. View of the unit-cell contents for (I). Hydrogen-bond interactions are drawn with dashed lines.

Hexane-1,6-diammonium bis(pyridine-2-carboxylate)

Crystal data

 $C_6H_{18}N_2^{2+} \cdot 2C_6H_4NO_2^{-}$ $M_r = 362.43$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.8182 (7) Å b = 9.1569 (7) Å*c* = 21.6423 (17) Å $\beta = 99.038 (2)^{\circ}$ V = 1921.6 (3) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer	4752 independent reflections
Radiation source: fine-focus sealed tube	1740 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.089$
T = 296 K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -13 \rightarrow 13$
$T_{\min} = 0.685, \ T_{\max} = 0.984$	$k = -12 \rightarrow 12$
13964 measured reflections	$l = -21 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	Hydrogen site location: inferred from neighbour sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	All H-atom parameters refined
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0318P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{max} < 0.001$
4752 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
339 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $F_{000} = 776$

 $D_{\rm x} = 1.253 {\rm Mg m}^{-3}$ Mo *K*α radiation

Cell parameters from 1472 reflections

 $\lambda = 0.71073 \text{ \AA}$

 $\theta = 2.6\text{--}24.0^{o}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless $0.33 \times 0.25 \times 0.18 \text{ mm}$

T = 296 K

r map ring

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

$O1$ $0.39197 (19)$ $0.3983 (2)$ $0.43294 (9)$ $0.0607 (6)$ $O2$ $0.3440 (2)$ $0.1705 (2)$ $0.40142 (11)$ $0.0809 (7)$ $N1$ $0.5671 (2)$ $0.4287 (2)$ $0.34905 (10)$ $0.0514 (6)$ $C1$ $0.6534 (3)$ $0.4405 (4)$ $0.30699 (15)$ $0.0632 (9)$ $H1$ $0.704 (3)$ $0.538 (3)$ $0.3085 (12)$ $0.078 (10)^8$ $C2$ $0.6711 (3)$ $0.3335 (4)$ $0.26461 (16)$ $0.0684 (9)$ $H2$ $0.739 (3)$ $0.351 (3)$ $0.2336 (14)$ $0.100 (11)^8$ $C3$ $0.5975 (4)$ $0.2072 (4)$ $0.26545 (16)$ $0.0702 (10)$ $H3$ $0.605 (3)$ $0.128 (3)$ $0.2356 (13)$ $0.080 (10)^8$ $C4$ $0.5110 (3)$ $0.1905 (3)$ $0.30952 (14)$ $0.586 (8)$ $H4$ $0.458 (2)$ $0.099 (3)$ $0.3141 (12)$ $0.061 (8)^8$ $C5$ $0.4980 (3)$ $0.3030 (3)$ $0.35030 (12)$ $0.428 (6)$ $C6$ $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0508 (7)$ $O3$ $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.654 (6)$ $O4$ $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ $N2$ $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ $C7$ $-0.0394 (4)$ $0.5565 (4)$ $0.27899 (17)$ $0.0718 (10)$ $H7$ $-0.127 (3)$ $0.630 (3)$ $0.3287 (12)$ $0.066 (9)^*$ $C10$ $0.1851 (3)$ $0.4464 (3)$ $0.23713 (14)$ $0.083 (10)^$		x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
$O2$ $0.3440(2)$ $0.1705(2)$ $0.40142(11)$ $0.0809(7)$ N1 $0.5671(2)$ $0.4287(2)$ $0.34905(10)$ $0.0514(6)$ C1 $0.6534(3)$ $0.4405(4)$ $0.30699(15)$ $0.0632(9)$ H1 $0.704(3)$ $0.538(3)$ $0.3085(12)$ $0.078(10)^4$ C2 $0.6711(3)$ $0.3335(4)$ $0.26461(16)$ $0.0684(9)$ H2 $0.739(3)$ $0.351(3)$ $0.2336(14)$ $0.100(11)^*$ C3 $0.5975(4)$ $0.2072(4)$ $0.26545(16)$ $0.0702(10)$ H3 $0.605(3)$ $0.128(3)$ $0.2356(13)$ $0.080(10)^*$ C4 $0.5110(3)$ $0.1905(3)$ $0.30952(14)$ $0.0586(8)$ H4 $0.458(2)$ $0.099(3)$ $0.3141(12)$ $0.061(8)^*$ C5 $0.4980(3)$ $0.3030(3)$ $0.35030(12)$ $0.428(6)$ C6 $0.4034(3)$ $0.2901(3)$ $0.39927(14)$ $0.0508(7)$ O3 $0.1328(2)$ $0.4425(2)$ $0.07130(9)$ $0.0654(6)$ O4 $0.2162(2)$ $0.2478(2)$ $0.12601(10)$ $0.0769(10)$ N2 $0.0026(2)$ $0.5187(3)$ $0.16852(11)$ $0.0617(7)$ C7 $-0.0394(4)$ $0.5760(4)$ $0.21915(18)$ $0.0749(10)$ H7 $-0.127(3)$ $0.630(3)$ $0.2387(12)$ $0.0653(9)$ H8 $-0.010(3)$ $0.633(3)$ $0.3287(12)$ $0.066(9)^*$ C10 $0.1851(3)$ $0.446(3)$ $0.22713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.0443(7)$ <tr< td=""><td>01</td><td>0.39197 (19)</td><td>0.3983 (2)</td><td>0.43294 (9)</td><td>0.0607 (6)</td></tr<>	01	0.39197 (19)	0.3983 (2)	0.43294 (9)	0.0607 (6)
N1 $0.5671 (2)$ $0.4287 (2)$ $0.34905 (10)$ $0.0514 (6)$ C1 $0.6534 (3)$ $0.4405 (4)$ $0.30699 (15)$ $0.0632 (9)$ H1 $0.704 (3)$ $0.538 (3)$ $0.3085 (12)$ $0.078 (10)^8$ C2 $0.6711 (3)$ $0.3335 (4)$ $0.26461 (16)$ $0.0684 (9)$ H2 $0.739 (3)$ $0.351 (3)$ $0.2336 (14)$ $0.100 (11)^8$ C3 $0.5975 (4)$ $0.2072 (4)$ $0.26545 (16)$ $0.0702 (10)$ H3 $0.605 (3)$ $0.128 (3)$ $0.2356 (13)$ $0.080 (10)^8$ C4 $0.5110 (3)$ $0.1905 (3)$ $0.30952 (14)$ $0.0586 (8)$ H4 $0.458 (2)$ $0.099 (3)$ $0.3141 (12)$ $0.061 (8)^8$ C5 $0.4980 (3)$ $0.3030 (3)$ $0.35030 (12)$ $0.0428 (6)$ C6 $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0508 (7)$ O3 $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.6654 (6)$ O4 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.3131 (14)$ $0.080 (10)^8$ C9 $0.1416 (4)$ $0.4708 (4)$ $0.28807 (15)$ $0.0653 (9)$ H9 $0.195 (3)$ $0.456 (3)$ $0.3287 (12)$ $0.066 (9)^*$ C10 $0.1851 (3)$ $0.4464 (3)$ $0.23713 (14)$ $0.0545 (8)$ H10 $0.268 ($	02	0.3440 (2)	0.1705 (2)	0.40142 (11)	0.0809 (7)
C1 $0.6534 (3)$ $0.4405 (4)$ $0.30699 (15)$ $0.0632 (9)$ H1 $0.704 (3)$ $0.538 (3)$ $0.3085 (12)$ $0.078 (10)^4$ C2 $0.6711 (3)$ $0.3335 (4)$ $0.26461 (16)$ $0.0684 (9)$ H2 $0.739 (3)$ $0.351 (3)$ $0.2336 (14)$ $0.100 (11)^8$ C3 $0.5975 (4)$ $0.2072 (4)$ $0.26545 (16)$ $0.0702 (10)^{11}$ H3 $0.605 (3)$ $0.128 (3)$ $0.2356 (13)$ $0.080 (10)^8$ C4 $0.5110 (3)$ $0.1905 (3)$ $0.30952 (14)$ $0.0586 (8)$ H4 $0.458 (2)$ $0.099 (3)$ $0.3141 (12)$ $0.061 (8)^8$ C5 $0.4980 (3)$ $0.3030 (3)$ $0.35030 (12)$ $0.0428 (6)$ C6 $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0586 (7)$ O3 $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.0654 (6)$ O4 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.3287 (12)$ $0.0653 (9)$ H9 $0.195 (3)$ $0.456 (3)$ $0.3287 (12)$ $0.066 (9)^8$ C10 $0.1851 (3)$ $0.4064 (3)$ $0.23713 (14)$ $0.083 (10)^8$ H10 $0.268 (3)$ $0.344 (3)$ $0.2409 (13)$ $0.083 (10)^8$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0433 (7)$	N1	0.5671 (2)	0.4287 (2)	0.34905 (10)	0.0514 (6)
H1 $0.704 (3)$ $0.538 (3)$ $0.3085 (12)$ $0.078 (10)^{*}$ C2 $0.6711 (3)$ $0.3335 (4)$ $0.26461 (16)$ $0.0684 (9)$ H2 $0.739 (3)$ $0.351 (3)$ $0.2336 (14)$ $0.100 (11)^{*}$ C3 $0.5975 (4)$ $0.2072 (4)$ $0.26545 (16)$ $0.0702 (10)$ H3 $0.605 (3)$ $0.128 (3)$ $0.2356 (13)$ $0.080 (10)^{*}$ C4 $0.5110 (3)$ $0.1905 (3)$ $0.30952 (14)$ $0.0586 (8)$ H4 $0.458 (2)$ $0.099 (3)$ $0.3141 (12)$ $0.061 (8)^{*}$ C5 $0.4980 (3)$ $0.3030 (3)$ $0.35030 (12)$ $0.0428 (6)$ C6 $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0508 (7)$ O3 $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.0654 (6)$ O4 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.2387 (15)$ $0.0653 (9)$ H8 $-0.010 (3)$ $0.603 (3)$ $0.3131 (14)$ $0.080 (10)^{*}$ C9 $0.1416 (4)$ $0.4708 (4)$ $0.23713 (14)$ $0.0854 (8)$ H10 $0.268 (3)$ $0.344 (3)$ $0.2409 (13)$ $0.083 (10)^{*}$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0443 (7)$	C1	0.6534 (3)	0.4405 (4)	0.30699 (15)	0.0632 (9)
C2 $0.6711 (3)$ $0.3335 (4)$ $0.26461 (16)$ $0.0684 (9)$ H2 $0.739 (3)$ $0.351 (3)$ $0.2336 (14)$ $0.100 (11)^*$ C3 $0.5975 (4)$ $0.2072 (4)$ $0.26545 (16)$ $0.0702 (10)$ H3 $0.605 (3)$ $0.128 (3)$ $0.2356 (13)$ $0.080 (10)^*$ C4 $0.5110 (3)$ $0.1905 (3)$ $0.30952 (14)$ $0.0586 (8)$ H4 $0.458 (2)$ $0.099 (3)$ $0.3141 (12)$ $0.061 (8)^*$ C5 $0.4980 (3)$ $0.3030 (3)$ $0.35030 (12)$ $0.0428 (6)$ C6 $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0508 (7)$ O3 $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.0654 (6)$ O4 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.2387 (12)$ $0.066 (9)^*$ C8 $0.0265 (4)$ $0.5565 (4)$ $0.27899 (17)$ $0.0718 (10)^*$ H8 $-0.010 (3)$ $0.603 (3)$ $0.3287 (12)$ $0.066 (9)^*$ C10 $0.1851 (3)$ $0.44064 (3)$ $0.23713 (14)$ $0.0545 (8)$ H10 $0.268 (3)$ $0.344 (3)$ $0.2409 (13)$ $0.083 (10)^*$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0437 (7)$	H1	0.704 (3)	0.538 (3)	0.3085 (12)	0.078 (10)*
H2 $0.739 (3)$ $0.351 (3)$ $0.2336 (14)$ $0.100 (11)^*$ C3 $0.5975 (4)$ $0.2072 (4)$ $0.26545 (16)$ $0.0702 (10)$ H3 $0.605 (3)$ $0.128 (3)$ $0.2356 (13)$ $0.080 (10)^*$ C4 $0.5110 (3)$ $0.1905 (3)$ $0.30952 (14)$ $0.0586 (8)$ H4 $0.458 (2)$ $0.099 (3)$ $0.3141 (12)$ $0.061 (8)^*$ C5 $0.4980 (3)$ $0.3030 (3)$ $0.35030 (12)$ $0.0428 (6)$ C6 $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0508 (7)$ O3 $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.0654 (6)$ O4 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.2088 (13)$ $0.084 (10)^*$ C8 $0.0265 (4)$ $0.5565 (4)$ $0.27899 (17)$ $0.0718 (10)$ H8 $-0.010 (3)$ $0.603 (3)$ $0.3287 (12)$ $0.066 (9)^*$ C10 $0.1851 (3)$ $0.4464 (3)$ $0.23713 (14)$ $0.083 (10)^*$ H10 $0.268 (3)$ $0.344 (3)$ $0.2409 (13)$ $0.083 (10)^*$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0443 (7)$	C2	0.6711 (3)	0.3335 (4)	0.26461 (16)	0.0684 (9)
C3 $0.5975(4)$ $0.2072(4)$ $0.26545(16)$ $0.0702(10)$ H3 $0.605(3)$ $0.128(3)$ $0.2356(13)$ $0.080(10)^*$ C4 $0.5110(3)$ $0.1905(3)$ $0.30952(14)$ $0.0586(8)$ H4 $0.458(2)$ $0.099(3)$ $0.3141(12)$ $0.061(8)^*$ C5 $0.4980(3)$ $0.3030(3)$ $0.35030(12)$ $0.0428(6)$ C6 $0.4034(3)$ $0.2901(3)$ $0.39927(14)$ $0.05877(14)$ O3 $0.1328(2)$ $0.4425(2)$ $0.07130(9)$ $0.0654(6)$ O4 $0.2162(2)$ $0.2478(2)$ $0.12601(10)$ $0.0760(7)$ N2 $0.0026(2)$ $0.5187(3)$ $0.16852(11)$ $0.0617(7)$ C7 $-0.0394(4)$ $0.5760(4)$ $0.21915(18)$ $0.0749(10)$ H7 $-0.127(3)$ $0.630(3)$ $0.2088(13)$ $0.084(10)^*$ C8 $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ H8 $-0.010(3)$ $0.603(3)$ $0.3287(12)$ $0.066(9)^*$ C10 $0.1851(3)$ $0.4464(3)$ $0.23713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.083(10)^*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	H2	0.739 (3)	0.351 (3)	0.2336 (14)	0.100 (11)*
H3 $0.605(3)$ $0.128(3)$ $0.2356(13)$ $0.080(10)^*$ C4 $0.5110(3)$ $0.1905(3)$ $0.30952(14)$ $0.0586(8)$ H4 $0.458(2)$ $0.099(3)$ $0.3141(12)$ $0.061(8)^*$ C5 $0.4980(3)$ $0.3030(3)$ $0.35030(12)$ $0.0428(6)$ C6 $0.4034(3)$ $0.2901(3)$ $0.39927(14)$ $0.0586(7)$ O3 $0.1328(2)$ $0.4425(2)$ $0.07130(9)$ $0.0654(6)$ O4 $0.2162(2)$ $0.2478(2)$ $0.12601(10)$ $0.0760(7)$ N2 $0.0026(2)$ $0.5187(3)$ $0.16852(11)$ $0.0749(10)$ H7 $-0.127(3)$ $0.630(3)$ $0.2088(13)$ $0.084(10)^*$ C8 $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ H8 $-0.010(3)$ $0.603(3)$ $0.3287(12)$ $0.066(9)^*$ C10 $0.1851(3)$ $0.466(3)$ $0.23713(14)$ $0.053(10)^*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	C3	0.5975 (4)	0.2072 (4)	0.26545 (16)	0.0702 (10)
C4 $0.5110 (3)$ $0.1905 (3)$ $0.30952 (14)$ $0.0586 (8)$ H4 $0.458 (2)$ $0.099 (3)$ $0.3141 (12)$ $0.061 (8)^*$ C5 $0.4980 (3)$ $0.3030 (3)$ $0.35030 (12)$ $0.0428 (6)$ C6 $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0508 (7)$ O3 $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.0654 (6)$ O4 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.2088 (13)$ $0.084 (10)^*$ C8 $0.0265 (4)$ $0.5565 (4)$ $0.27899 (17)$ $0.0718 (10)$ H8 $-0.010 (3)$ $0.603 (3)$ $0.3287 (12)$ $0.066 (9)^*$ C10 $0.1851 (3)$ $0.4464 (3)$ $0.23713 (14)$ $0.0545 (8)$ H10 $0.268 (3)$ $0.344 (3)$ $0.2409 (13)$ $0.083 (10)^*$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0443 (7)$	Н3	0.605 (3)	0.128 (3)	0.2356 (13)	0.080 (10)*
H4 $0.458(2)$ $0.099(3)$ $0.3141(12)$ $0.061(8)^*$ C5 $0.4980(3)$ $0.3030(3)$ $0.35030(12)$ $0.0428(6)$ C6 $0.4034(3)$ $0.2901(3)$ $0.39927(14)$ $0.0508(7)$ O3 $0.1328(2)$ $0.4425(2)$ $0.07130(9)$ $0.0654(6)$ O4 $0.2162(2)$ $0.2478(2)$ $0.12601(10)$ $0.0760(7)$ N2 $0.0026(2)$ $0.5187(3)$ $0.16852(11)$ $0.0617(7)$ C7 $-0.0394(4)$ $0.5760(4)$ $0.21915(18)$ $0.0749(10)$ H7 $-0.127(3)$ $0.630(3)$ $0.2088(13)$ $0.084(10)^*$ C8 $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ H8 $-0.010(3)$ $0.603(3)$ $0.3131(14)$ $0.080(10)^*$ C9 $0.1416(4)$ $0.4708(4)$ $0.23713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.083(10)^*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	C4	0.5110 (3)	0.1905 (3)	0.30952 (14)	0.0586 (8)
C5 $0.4980(3)$ $0.3030(3)$ $0.35030(12)$ $0.0428(6)$ C6 $0.4034(3)$ $0.2901(3)$ $0.39927(14)$ $0.0508(7)$ O3 $0.1328(2)$ $0.4425(2)$ $0.07130(9)$ $0.0654(6)$ O4 $0.2162(2)$ $0.2478(2)$ $0.12601(10)$ $0.0760(7)$ N2 $0.0026(2)$ $0.5187(3)$ $0.16852(11)$ $0.0617(7)$ C7 $-0.0394(4)$ $0.5760(4)$ $0.21915(18)$ $0.0749(10)$ H7 $-0.127(3)$ $0.630(3)$ $0.2088(13)$ $0.084(10)*$ C8 $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ H8 $-0.010(3)$ $0.603(3)$ $0.3131(14)$ $0.080(10)*$ C9 $0.1416(4)$ $0.4708(4)$ $0.23713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.083(10)*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	H4	0.458 (2)	0.099 (3)	0.3141 (12)	0.061 (8)*
C6 $0.4034 (3)$ $0.2901 (3)$ $0.39927 (14)$ $0.0508 (7)$ O3 $0.1328 (2)$ $0.4425 (2)$ $0.07130 (9)$ $0.0654 (6)$ O4 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.2088 (13)$ $0.084 (10)^*$ C8 $0.0265 (4)$ $0.5565 (4)$ $0.27899 (17)$ $0.0718 (10)$ H8 $-0.010 (3)$ $0.603 (3)$ $0.3131 (14)$ $0.080 (10)^*$ C9 $0.1416 (4)$ $0.4708 (4)$ $0.2287 (15)$ $0.0653 (9)$ H9 $0.195 (3)$ $0.456 (3)$ $0.22713 (14)$ $0.0545 (8)$ H10 $0.268 (3)$ $0.344 (3)$ $0.2409 (13)$ $0.083 (10)^*$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0443 (7)$	C5	0.4980 (3)	0.3030 (3)	0.35030 (12)	0.0428 (6)
O3 $0.1328(2)$ $0.4425(2)$ $0.07130(9)$ $0.0654(6)$ $O4$ $0.2162(2)$ $0.2478(2)$ $0.12601(10)$ $0.0760(7)$ $N2$ $0.0026(2)$ $0.5187(3)$ $0.16852(11)$ $0.0617(7)$ $C7$ $-0.0394(4)$ $0.5760(4)$ $0.21915(18)$ $0.0749(10)$ $H7$ $-0.127(3)$ $0.630(3)$ $0.2088(13)$ $0.084(10)*$ $C8$ $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ $H8$ $-0.010(3)$ $0.603(3)$ $0.3131(14)$ $0.080(10)*$ $C9$ $0.1416(4)$ $0.4708(4)$ $0.28807(15)$ $0.0653(9)$ $H9$ $0.195(3)$ $0.456(3)$ $0.23713(14)$ $0.0545(8)$ $H10$ $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.083(10)*$ $C11$ $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	C6	0.4034 (3)	0.2901 (3)	0.39927 (14)	0.0508 (7)
04 $0.2162 (2)$ $0.2478 (2)$ $0.12601 (10)$ $0.0760 (7)$ N2 $0.0026 (2)$ $0.5187 (3)$ $0.16852 (11)$ $0.0617 (7)$ C7 $-0.0394 (4)$ $0.5760 (4)$ $0.21915 (18)$ $0.0749 (10)$ H7 $-0.127 (3)$ $0.630 (3)$ $0.2088 (13)$ $0.084 (10)^*$ C8 $0.0265 (4)$ $0.5565 (4)$ $0.27899 (17)$ $0.0718 (10)$ H8 $-0.010 (3)$ $0.603 (3)$ $0.3131 (14)$ $0.080 (10)^*$ C9 $0.1416 (4)$ $0.4708 (4)$ $0.28807 (15)$ $0.0653 (9)$ H9 $0.195 (3)$ $0.456 (3)$ $0.3287 (12)$ $0.066 (9)^*$ C10 $0.1851 (3)$ $0.4064 (3)$ $0.23713 (14)$ $0.083 (10)^*$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0443 (7)$	03	0.1328 (2)	0.4425 (2)	0.07130 (9)	0.0654 (6)
N2 $0.0026(2)$ $0.5187(3)$ $0.16852(11)$ $0.0617(7)$ C7 $-0.0394(4)$ $0.5760(4)$ $0.21915(18)$ $0.0749(10)$ H7 $-0.127(3)$ $0.630(3)$ $0.2088(13)$ $0.084(10)^*$ C8 $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ H8 $-0.010(3)$ $0.603(3)$ $0.3131(14)$ $0.080(10)^*$ C9 $0.1416(4)$ $0.4708(4)$ $0.28807(15)$ $0.0653(9)$ H9 $0.195(3)$ $0.456(3)$ $0.3287(12)$ $0.066(9)^*$ C10 $0.1851(3)$ $0.4064(3)$ $0.23713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.0433(10)^*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	O4	0.2162 (2)	0.2478 (2)	0.12601 (10)	0.0760 (7)
C7 $-0.0394(4)$ $0.5760(4)$ $0.21915(18)$ $0.0749(10)$ H7 $-0.127(3)$ $0.630(3)$ $0.2088(13)$ $0.084(10)^*$ C8 $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ H8 $-0.010(3)$ $0.603(3)$ $0.3131(14)$ $0.080(10)^*$ C9 $0.1416(4)$ $0.4708(4)$ $0.28807(15)$ $0.0653(9)$ H9 $0.195(3)$ $0.456(3)$ $0.3287(12)$ $0.0666(9)^*$ C10 $0.1851(3)$ $0.4064(3)$ $0.23713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.083(10)^*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	N2	0.0026 (2)	0.5187 (3)	0.16852 (11)	0.0617 (7)
H7 $-0.127 (3)$ $0.630 (3)$ $0.2088 (13)$ $0.084 (10)^{*}$ C8 $0.0265 (4)$ $0.5565 (4)$ $0.27899 (17)$ $0.0718 (10)$ H8 $-0.010 (3)$ $0.603 (3)$ $0.3131 (14)$ $0.080 (10)^{*}$ C9 $0.1416 (4)$ $0.4708 (4)$ $0.28807 (15)$ $0.0653 (9)$ H9 $0.195 (3)$ $0.456 (3)$ $0.3287 (12)$ $0.066 (9)^{*}$ C10 $0.1851 (3)$ $0.4064 (3)$ $0.23713 (14)$ $0.0545 (8)$ H10 $0.268 (3)$ $0.344 (3)$ $0.2409 (13)$ $0.083 (10)^{*}$ C11 $0.1141 (3)$ $0.4333 (3)$ $0.17813 (13)$ $0.0443 (7)$	C7	-0.0394 (4)	0.5760 (4)	0.21915 (18)	0.0749 (10)
C8 $0.0265(4)$ $0.5565(4)$ $0.27899(17)$ $0.0718(10)$ H8 $-0.010(3)$ $0.603(3)$ $0.3131(14)$ $0.080(10)^*$ C9 $0.1416(4)$ $0.4708(4)$ $0.28807(15)$ $0.0653(9)$ H9 $0.195(3)$ $0.456(3)$ $0.3287(12)$ $0.066(9)^*$ C10 $0.1851(3)$ $0.4064(3)$ $0.23713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.083(10)^*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	H7	-0.127 (3)	0.630 (3)	0.2088 (13)	0.084 (10)*
H8 $-0.010(3)$ $0.603(3)$ $0.3131(14)$ $0.080(10)^*$ C9 $0.1416(4)$ $0.4708(4)$ $0.28807(15)$ $0.0653(9)$ H9 $0.195(3)$ $0.456(3)$ $0.3287(12)$ $0.0666(9)^*$ C10 $0.1851(3)$ $0.4064(3)$ $0.23713(14)$ $0.0545(8)$ H10 $0.268(3)$ $0.344(3)$ $0.2409(13)$ $0.083(10)^*$ C11 $0.1141(3)$ $0.4333(3)$ $0.17813(13)$ $0.0443(7)$	C8	0.0265 (4)	0.5565 (4)	0.27899 (17)	0.0718 (10)
C9 0.1416 (4) 0.4708 (4) 0.28807 (15) 0.0653 (9) H9 0.195 (3) 0.456 (3) 0.3287 (12) 0.066 (9)* C10 0.1851 (3) 0.4064 (3) 0.23713 (14) 0.0545 (8) H10 0.268 (3) 0.344 (3) 0.2409 (13) 0.083 (10)* C11 0.1141 (3) 0.4333 (3) 0.17813 (13) 0.0443 (7)	H8	-0.010 (3)	0.603 (3)	0.3131 (14)	0.080 (10)*
H9 0.195 (3) 0.456 (3) 0.3287 (12) 0.066 (9)* C10 0.1851 (3) 0.4064 (3) 0.23713 (14) 0.0545 (8) H10 0.268 (3) 0.344 (3) 0.2409 (13) 0.083 (10)* C11 0.1141 (3) 0.4333 (3) 0.17813 (13) 0.0443 (7) C12 0.1592 (2) 0.2602 (2) 0.10022 (14) 0.0472 (7)	C9	0.1416 (4)	0.4708 (4)	0.28807 (15)	0.0653 (9)
C10 0.1851 (3) 0.4064 (3) 0.23713 (14) 0.0545 (8) H10 0.268 (3) 0.344 (3) 0.2409 (13) 0.083 (10)* C11 0.1141 (3) 0.4333 (3) 0.17813 (13) 0.0443 (7) C12 0.1592 (2) 0.2602 (2) 0.12022 (14) 0.2472 (7)	H9	0.195 (3)	0.456 (3)	0.3287 (12)	0.066 (9)*
H10 0.268 (3) 0.344 (3) 0.2409 (13) 0.083 (10)* C11 0.1141 (3) 0.4333 (3) 0.17813 (13) 0.0443 (7) C12 0.1582 (2) 0.2602 (2) 0.12022 (14) 0.2472 (7)	C10	0.1851 (3)	0.4064 (3)	0.23713 (14)	0.0545 (8)
C11 0.1141 (3) 0.4333 (3) 0.17813 (13) 0.0443 (7) C12 0.1582 (2) 0.2602 (2) 0.12022 (14) 0.2472 (7)	H10	0.268 (3)	0.344 (3)	0.2409 (13)	0.083 (10)*
	C11	0.1141 (3)	0.4333 (3)	0.17813 (13)	0.0443 (7)
$C_{12} \qquad 0.1582 (3) \qquad 0.3693 (5) \qquad 0.12002 (14) \qquad 0.0479 (7)$	C12	0.1582 (3)	0.3693 (3)	0.12002 (14)	0.0479 (7)
N3 0.4265 (3) 0.1748 (3) 0.06174 (13) 0.0505 (7)	N3	0.4265 (3)	0.1748 (3)	0.06174 (13)	0.0505 (7)
H3A 0.334 (3) 0.200 (3) 0.0800 (14) 0.114 (12)*	H3A	0.334 (3)	0.200 (3)	0.0800 (14)	0.114 (12)*
H3B 0.467 (3) 0.090 (3) 0.0830 (15) 0.095 (12)*	H3B	0.467 (3)	0.090 (3)	0.0830 (15)	0.095 (12)*
H3C 0.415 (3) 0.154 (3) 0.0194 (16) 0.092 (12)*	H3C	0.415 (3)	0.154 (3)	0.0194 (16)	0.092 (12)*
N4 1.1032 (3) 0.3355 (3) -0.04832 (13) 0.0487 (6)	N4	1.1032 (3)	0.3355 (3)	-0.04832 (13)	0.0487 (6)
H4A 1.046 (3) 0.403 (3) -0.0754 (12) 0.068 (10)*	H4A	1.046 (3)	0.403 (3)	-0.0754 (12)	0.068 (10)*
H4B 1.117 (3) 0.372 (3) -0.0007 (16) 0.099 (11)*	H4B	1.117 (3)	0.372 (3)	-0.0007 (16)	0.099 (11)*

H4C	1.196 (4)	0.333 (3)	-0.0672 (15)	0.126 (13)*
C13	0.5150 (3)	0.3063 (4)	0.07920 (18)	0.0655 (9)
H13A	0.500 (3)	0.334 (3)	0.1259 (15)	0.101 (11)*
H13B	0.475 (3)	0.388 (3)	0.0459 (14)	0.099 (11)*
C14	0.6652 (4)	0.2789 (4)	0.07806 (17)	0.0676 (10)
H14A	0.718 (3)	0.372 (3)	0.0970 (13)	0.086 (10)*
H14B	0.697 (3)	0.194 (3)	0.1038 (14)	0.090 (12)*
C15	0.6995 (3)	0.2449 (4)	0.01361 (16)	0.0600 (9)
H15A	0.654 (3)	0.150 (3)	-0.0029 (13)	0.073 (9)*
H15B	0.654 (3)	0.336 (3)	-0.0184 (14)	0.100 (11)*
C16	0.8544 (3)	0.2304 (4)	0.01326 (16)	0.0578 (8)
H16A	0.895 (3)	0.153 (3)	0.0455 (12)	0.072 (9)*
H16B	0.898 (2)	0.328 (3)	0.0250 (12)	0.070 (9)*
C17	0.8877 (3)	0.1893 (4)	-0.05053 (16)	0.0623 (9)
H17A	0.841 (3)	0.261 (3)	-0.0839 (13)	0.075 (10)*
H17B	0.851 (3)	0.083 (3)	-0.0641 (14)	0.103 (11)*
C18	1.0393 (4)	0.1871 (4)	-0.05523 (19)	0.0660 (9)
H18A	1.054 (3)	0.150 (3)	-0.1001 (15)	0.110 (12)*
H18B	1.088 (3)	0.123 (3)	-0.0212 (15)	0.102 (13)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0655 (13)	0.0674 (13)	0.0506 (12)	0.0062 (11)	0.0135 (11)	-0.0096 (11)
02	0.0771 (15)	0.0718 (15)	0.1046 (19)	-0.0218 (12)	0.0482 (14)	-0.0166 (14)
N1	0.0577 (15)	0.0545 (15)	0.0435 (14)	-0.0030 (12)	0.0132 (12)	-0.0014 (12)
C1	0.077 (2)	0.062 (2)	0.053 (2)	-0.0093 (19)	0.0165 (19)	-0.0003 (19)
C2	0.069 (2)	0.079 (3)	0.062 (2)	-0.006 (2)	0.0240 (19)	-0.007 (2)
C3	0.083 (2)	0.071 (2)	0.061 (2)	0.008 (2)	0.026 (2)	-0.019 (2)
C4	0.065 (2)	0.0547 (19)	0.058 (2)	-0.0009 (17)	0.0143 (17)	-0.0086 (18)
C5	0.0387 (15)	0.0484 (16)	0.0397 (16)	0.0027 (14)	0.0009 (13)	0.0009 (15)
C6	0.0406 (17)	0.0568 (19)	0.0536 (19)	0.0032 (16)	0.0037 (15)	-0.0004 (17)
O3	0.0893 (16)	0.0646 (13)	0.0413 (12)	0.0046 (11)	0.0075 (11)	0.0000 (12)
O4	0.0864 (16)	0.0717 (14)	0.0775 (16)	0.0331 (13)	0.0361 (13)	0.0103 (13)
N2	0.0638 (17)	0.0723 (17)	0.0496 (16)	0.0235 (14)	0.0108 (14)	0.0054 (14)
C7	0.076 (3)	0.083 (3)	0.066 (2)	0.031 (2)	0.014 (2)	0.005 (2)
C8	0.088 (3)	0.073 (2)	0.060 (2)	0.010 (2)	0.029 (2)	-0.002 (2)
С9	0.077 (3)	0.077 (2)	0.041 (2)	-0.001 (2)	0.0073 (19)	0.007 (2)
C10	0.0522 (19)	0.062 (2)	0.0489 (19)	0.0088 (16)	0.0048 (17)	0.0112 (18)
C11	0.0437 (17)	0.0441 (16)	0.0447 (17)	0.0016 (14)	0.0055 (14)	0.0061 (15)
C12	0.0424 (17)	0.0504 (18)	0.0510 (19)	-0.0023 (14)	0.0073 (15)	0.0037 (16)
N3	0.0516 (16)	0.0521 (16)	0.0487 (17)	0.0030 (14)	0.0111 (14)	0.0051 (15)
N4	0.0480 (15)	0.0531 (16)	0.0445 (15)	0.0048 (13)	0.0060 (14)	0.0050 (14)
C13	0.066 (2)	0.055 (2)	0.079 (3)	-0.0051 (18)	0.021 (2)	-0.008 (2)
C14	0.063 (2)	0.070 (2)	0.072 (3)	-0.010 (2)	0.016 (2)	-0.013 (2)
C15	0.052 (2)	0.066 (2)	0.063 (2)	-0.0077 (18)	0.0128 (18)	0.000 (2)
C16	0.052 (2)	0.058 (2)	0.064 (2)	-0.0051 (17)	0.0086 (17)	0.0004 (19)
C17	0.059 (2)	0.069 (2)	0.061 (2)	-0.0086 (19)	0.0140 (18)	-0.008 (2)

C18	0.069 (2)	0.060 (2)	0.074 (3)	-0.0004 (19)	0.025 (2)	-0.010 (2)
Geometric paran	neters (Å, °)					
01 C6		1 245 (2)		N2 C12		1 409 (4)
01 = C6		1.243(3)		N3-C13		1.498 (4)
02—C0		1.243(3)		N3—113A N2 U2D		1.07(3)
NI = CJ		1.339(3)		$N_{2} = H_{2}C$		0.90(3)
NI = CI		1.341(3) 1.371(4)		NJ-113C		0.92(3)
C1—C2		1.371(4) 1.02(3)		N4-C18		1.495(4)
$C^2 - C^3$		1.02(3)		N4—H4R		1.07(3)
C2—C3		1.303(4)		NA HAC		1.07 (3)
$C_2 = H_2$		1.03(3) 1.381(4)		C_{13} C_{14}		1.03(3)
$C_3 = U_4$		1.381(4)		C13—C14		1.300(4)
C_{3}		0.98(3)		C13 H13R		1.08(3)
C4—C3		1.373(3) 1.00(2)		C13—III3B		1.518 (4)
C4—I14 C5—C6		1.00(2) 1.520(3)		С14—Н14А		1.05 (3)
C_{3} C_{12}		1.320(3) 1.241(3)		C14—H14R		0.98(3)
03 - C12		1.247(3)		C15_C16		1 528 (4)
N2-C11		1.247(3) 1.335(3)		С15—Н15А		1.01 (3)
N2—C7		1.335(3) 1.337(4)		C15—H15R		1.13 (3)
C7—C8		1.365 (4)		C16—C17		1 515 (4)
С7—Н7		0.99(3)		С16—Н16А		1.03 (3)
C8-C9		1 365 (4)		C16—H16B		1.05 (3)
С8—Н8		0.97 (3)		C17—C18		1 508 (4)
C9—C10		1 376 (4)		С17—Н17А		1.03 (3)
С9—Н9		0.96(3)		С17—Н17В		1.06 (3)
C10-C11		1.378 (4)		C18—H18A		1.06 (3)
C10—H10		0.99 (3)		C18—H18B		1.01 (3)
C11—C12		1.512 (4)				(-)
C5—N1—C1		117.3 (3)		H3B—N3—H3C		107 (3)
N1—C1—C2		123.8 (3)		C18—N4—H4A		108.7 (15)
N1—C1—H1		114.0 (15)		C18—N4—H4B		111.5 (16)
C2—C1—H1		122.2 (15)		H4A—N4—H4B		111 (2)
C3—C2—C1		118.2 (3)		C18—N4—H4C		108.3 (18)
С3—С2—Н2		122.6 (17)		H4A—N4—H4C		104 (2)
С1—С2—Н2		119.1 (17)		H4B—N4—H4C		113 (2)
C2—C3—C4		119.1 (3)		N3—C13—C14		113.3 (3)
С2—С3—Н3		121.3 (16)		N3—C13—H13A		105.3 (16)
С4—С3—Н3		119.6 (16)		C14—C13—H13A		109.7 (16)
C5—C4—C3		119.3 (3)		N3—C13—H13B		104.9 (16)
C5—C4—H4		117.4 (15)		С14—С13—Н13В		111.3 (16)
C3—C4—H4		123.3 (15)		H13A—C13—H13B		112 (2)
N1-C5-C4		122.2 (3)		C13—C14—C15		114.2 (3)
N1—C5—C6		116.6 (2)		C13—C14—H14A		106.5 (15)
C4—C5—C6		121.2 (3)		C15—C14—H14A		111.1 (15)
O2—C6—O1		126.3 (3)		C13—C14—H14B		110.6 (18)
O2—C6—C5		115.8 (3)		C15—C14—H14B		105.3 (18)
O1—C6—C5		117.9 (3)		H14A—C14—H14B		109 (2)

C11—N2—C7	116.9 (3)	C14—C15—C16	112.8 (3)
N2—C7—C8	124.4 (3)	C14—C15—H15A	110.5 (15)
N2—C7—H7	112.3 (17)	C16—C15—H15A	108.0 (15)
С8—С7—Н7	123.2 (17)	C14—C15—H15B	106.8 (15)
C9—C8—C7	118.0 (3)	C16—C15—H15B	111.0 (14)
С9—С8—Н8	122.6 (17)	H15A—C15—H15B	108 (2)
С7—С8—Н8	119.4 (17)	C17—C16—C15	112.5 (3)
C8—C9—C10	119.0 (3)	C17—C16—H16A	109.2 (14)
С8—С9—Н9	122.0 (16)	C15—C16—H16A	109.9 (14)
С10—С9—Н9	118.9 (16)	C17—C16—H16B	107.8 (15)
C9—C10—C11	119.4 (3)	C15—C16—H16B	107.9 (14)
С9—С10—Н10	122.4 (17)	H16A—C16—H16B	110 (2)
C11—C10—H10	118.2 (17)	C18—C17—C16	114.9 (3)
N2-C11-C10	122.2 (3)	С18—С17—Н17А	107.2 (15)
N2-C11-C12	115.7 (3)	C16—C17—H17A	110.3 (15)
C10-C11-C12	122.2 (3)	С18—С17—Н17В	105.3 (16)
O3—C12—O4	126.7 (3)	C16—C17—H17B	111.6 (16)
O3—C12—C11	116.8 (3)	H17A—C17—H17B	107 (2)
O4—C12—C11	116.5 (3)	N4—C18—C17	112.6 (3)
C13—N3—H3A	103.1 (16)	N4	105.7 (17)
C13—N3—H3B	110.6 (18)	C17—C18—H18A	110.1 (17)
H3A—N3—H3B	108 (2)	N4	108.5 (18)
C13—N3—H3C	113.2 (19)	C17—C18—H18B	108.7 (18)
H3A—N3—H3C	115 (3)	H18A—C18—H18B	111 (2)
C5—N1—C1—C2	2.0 (4)	C8—C9—C10—C11	1.9 (5)
N1—C1—C2—C3	-0.5 (5)	C7—N2—C11—C10	-1.1 (4)
C1—C2—C3—C4	-1.4 (5)	C7—N2—C11—C12	179.5 (3)
C2—C3—C4—C5	1.8 (5)	C9—C10—C11—N2	-0.9 (4)
C1—N1—C5—C4	-1.5 (4)	C9—C10—C11—C12	178.5 (3)
C1—N1—C5—C6	178.6 (2)	N2-C11-C12-O3	30.2 (3)
C3—C4—C5—N1	-0.3 (4)	C10-C11-C12-O3	-149.2 (3)
C3—C4—C5—C6	179.6 (3)	N2-C11-C12-O4	-149.6 (2)
N1—C5—C6—O2	-177.3 (3)	C10-C11-C12-O4	31.0 (4)
C4—C5—C6—O2	2.8 (4)	N3-C13-C14-C15	64.9 (4)
N1-C5-C6-O1	2.9 (4)	C13-C14-C15-C16	175.1 (3)
C4—C5—C6—O1	-177.0 (3)	C14—C15—C16—C17	177.3 (3)
C11—N2—C7—C8	2.2 (5)	C15—C16—C17—C18	174.6 (3)
N2—C7—C8—C9	-1.2 (6)	C16—C17—C18—N4	-66.6 (4)
C7—C8—C9—C10	-0.9 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
N3—H3A…O4	1.07 (3)	1.70 (3)	2.747 (3)	165 (3)
N3—H3B···O1 ⁱ	0.96 (3)	2.29 (3)	3.088 (3)	140 (2)
N3—H3B····N1 ⁱ	0.96 (3)	2.15 (3)	2.962 (3)	142 (2)
N3—H3C···O1 ⁱⁱ	0.92 (3)	1.91 (3)	2.835 (3)	177 (3)
N4—H4A···O3 ⁱⁱⁱ	0.97 (3)	2.27 (3)	3.064 (3)	139 (2)

N4—H4A…N2 ⁱⁱⁱ	0.97 (3)	2.12 (3)	2.963 (3)	144 (2)
N4—H4B···O3 ^{iv}	1.07 (3)	1.67 (3)	2.740 (3)	175 (3)
N4— $H4C$ ···O2 ^v	1.05 (3)	1.70 (4)	2.754 (3)	179 (3)
C1—H1···O4 ^{vi}	1.02 (3)	2.45 (3)	3.328 (4)	145 (2)
C16—H16B····O3 ^{iv}	1.01 (3)	2.58 (3)	3.426 (4)	140.8 (18)

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z; (iv) x+1, y, z; (v) x+1, -y+1/2, z-1/2; (vi) -x+1, y+1/2, -z+1/2.

